

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

FRAMEWORK FOR EVALUATING LOOP INVARIANT

DETECTION GAMES IN RELATION TO AUTOMATED

DYNAMIC INVARIANT DETECTORS

by

Mehmet Yilmaz

September 2015

Thesis Advisor: Geoffrey G. Xie

Second Reader: Glenn Cook

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2015

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
FRAMEWORK FOR EVALUATING LOOP INVARIANT DETECTION
GAMES IN RELATION TO AUTOMATED DYNAMIC INVARIANT
DETECTORS

5. FUNDING NUMBERS

6. AUTHOR(S) Yilmaz, Mehmet
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Software has a huge and negative impact on the economy. Formal verification is an effective method
to check whether a piece of software contains certain kinds of errors. Defense Advanced Research Projects
Agency (DARPA) started the Crowd Sourced Formal Verification (CSFV) program to propose a new
model for formal verification by using five online games. CSFV aims to explore whether an online game
player with no formal verification expertise can achieve formal verification more efficiently than through
conventional processes. We observe that, currently, no quality criteria exist to measure CSFV gamers’
efforts. The study suggests that machine detectability of a solution detected by a gamer indicates poor
quality for that solution. The solutions in one of the games, StormBound, were selected for examination.
An automated tool was developed to check the machine detectability of the solutions, and 78 percent of the
assertions were seen to be machine detectable.

14. SUBJECT TERMS
Crowdsourcing, software security, fuzzing, formal verification, automated loop invariant
detection, loop invariant analysis, parser, Haskell language

15. NUMBER OF
PAGES

85
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

FRAMEWORK FOR EVALUATING LOOP INVARIANT DETECTION GAMES
IN RELATION TO AUTOMATED DYNAMIC INVARIANT DETECTORS

Mehmet Yilmaz
Captain, Turkish Army

B.S., Turkish Military Academy, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Approved by: Geoffrey G. Xie
Thesis Advisor

Glenn Cook
Second Reader

Dan C. Boger, PhD
Chair, Department of Information Sciences

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Software has a huge and negative impact on the economy. Formal verification is

an effective method to check whether a piece of software contains certain kinds of errors.

Defense Advanced Research Projects Agency (DARPA) started the Crowd Sourced

Formal Verification (CSFV) program to propose a new model for formal verification by

using five online games. CSFV aims to explore whether an online game player with no

formal verification expertise can achieve formal verification more efficiently than

through conventional processes. We observe that, currently, no quality criteria exist to

measure CSFV gamers’ efforts. The study suggests that machine detectability of a

solution detected by a gamer indicates poor quality for that solution. The solutions in one

of the games, StormBound, were selected for examination. An automated tool was

developed to check the machine detectability of the solutions, and 78 percent of the

assertions were seen to be machine detectable.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. RESEARCH PROBLEM ..2
B. RESEARCH QUESTIONS AND HYPOTHESIS2
C. METHODOLOGY ..2
D. POTENTIAL BENEFITS ...3
E. SCOPE AND LIMITATIONS ..3
F. THESIS ORGANIZATION ..3

II. BACKGROUND ..5
A. SOFTWARE SECURITY AND BUGS ...5
B. TESTING AND FORMAL VERIFICATION ..8
C. LOOP INVARIANT ANALYSIS ...9
D. AUTOMATED INVARIANT DISCOVERY SYSTEMS

(DAIKON) ..11
E. CROWDSOURCED FORMAL VERIFICATION13
F. STORMBOUND ..15
G. SUMMARY ..19

III. DATA ABSTRACTION ..21
A. DATA COMPLEXITY ..21
B. DATA TRANSLATION ..25
C. DATA MANAGEMENT ...29
D. SUMMARY ..31

IV. METHODOLOGY AND FINDINGS ..33
A. CRITERIA: MACHINE DETECTABILITY33
B. INVARIANT CHECKLIST OF AN AUTOMATED SYSTEM34
C. AN AUTOMATED TOOL TO CHECK DETECTABILITY36
D. FINDINGS ..38
E. SUMMARY ..39

V. CONCLUSIONS AND FUTURE WORK ...41
A. SUMMARY AND CONCLUSION ..41
B. LIMITATIONS AND FUTURE WORK ...42

APPENDIX A. PARSER CODES ..45

 viii

APPENDIX B. DAIKON CHECKLIST ..53

LIST OF REFERENCES ..63

INITIAL DISTRIBUTION LIST ...67

 ix

LIST OF FIGURES

Figure 1. A Simple Code for String Operations ..7

Figure 2. Memory before Strcpy Function ..8

Figure 3. Memory after Strcpy Function ...8

Figure 4. A Simple Loop Program ..10

Figure 5. Installation of Daikon ..12

Figure 6. Xylem Game Interface ...15

Figure 7. A Part of Code Annotated by Frama-C..16

Figure 8. StormBound Game Interface ...18

Figure 9. Shell Script to Pull Data from Files ...21

Figure 10. Examples of the Assertions ..22

Figure 11. Variables CDF Diagram ..23

Figure 12. Parameters CDF Diagram ..24

Figure 13. Data Abstraction Table ..26

Figure 14. Second-Level Operations Overview ..27

Figure 15. Data Translation Example..28

Figure 16. Translation of a Loop Invariant ...29

Figure 17. Parser Algorithm ..30

Figure 18. A loop invariant translated by parser ...31

Figure 19. Detectability ...37

Figure 20. Excel VBA Codes for Checker ..38

Figure 21. Quality Criteria of Loop Invariants..42

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Statistical Information about StormBound Loop Invariants25

Table 2. Conversion Table ...35

Table 3. Detectability Table ...37

Table 4. Weak Assumptions ..38

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

BOF Buffer Overflow

CDF Cumulative Distribution Function

CSFV Crowdsourced Formal Verification

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DARPA Defense Advanced Research Projects Agency

LID Loop Invariant Detection

MTurk Mechanical Turk

NVD National Vulnerability Database

OS Operating System

SQL Structured Query Language

VC Verification Condition

VBA Visual Basic for Applications

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to all those who provided me the

opportunity to complete this thesis. I would like to express special gratitude to my

advisor, Professor Geoffrey G. Xie from Computer Science Department, whose

contribution in suggestions and encouragement helped me to write this thesis. In my life

as a military officer and an academician, I will benefit from his unique style of generating

the most precise question for a specific scientific problem.

I would also like to express my sincere gratitude to Professor Glenn Cook for

serving as my second advisor and teaching me how to write a perfect research paper.

I would also like to thank to Umit Tellioglu, who aroused my curiosity about the

Crowdsourced Formal Verification (CSFV); Andreas Baur, who accompanied me

throughout the thesis project; and Charles Prince, who took great efforts to find solutions

for the problems I encountered.

I would also like to thank to Aaron Tomb, who always gave detailed answers to

my questions especially related to formal verification.

Last but not least, I would like to thank my family for supporting me throughout

writing this thesis and my life in general.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Software bugs continue to affect critical systems. Detecting them requires some

mathematical models for understanding the behavior of a given software system. At

present, the process of creating these mathematical models is time consuming and

requires a high degree of mathematical and computer science training [1]. Worldwide,

there are insufficient people with this training to verify every software system that would

benefit from this approach [1]. The cost-effective formal verification will possibly

increase the number of formally proved software [2].

The Defense Advanced Research Projects Agency (DARPA) published the

Crowdsourced Formal Verification (CSFV) project in order to find a more affordable

way of handling these challenges [3]. The goal of CSFV is to explore whether someone

with no formal verification expertise can achieve formal verification more efficiently

than through traditional methods [3]. With the DARPA CSFV program, a group of

scientists developed a system to turn formal verification into five online games:

Circuitbot, StormBound, Ghostmap, FlowJam, and one iOS game, Xylem—the code of

plants. The games are published online at the Verigames.com website and were played by

many gamers from various backgrounds.

The CSFV project aims to test the primary hypothesis of whether a non-expert

Internet gamer can help verify a piece of software, which used to be the job of experts of

computer programs. Computer programs are still unable to produce satisfactory results.

Therefore, experts are still the best option for software verification. Even after the first

phase of the CSFV project ended in September 2014, it is still unclear whether the

contribution of CSFV gamers to software verification is satisfactory. The relative position

of CSFV gamers to expert verifiers and computer verifiers is also unclear.

Two games were designed as loop invariant detecting (LID) games: StormBound

and Xylem. They aim to present problems with the possible variable values from a

particular loop. Gamers are expected to detect possible invariants (generalizable relations

among the variables) among these values. Their answers (assertions) are written to the

 2

related loop as a comment that a software tester can use to see vulnerability. Similar to

other formal verification methods, LID is the job of experts and computer programs

(automated LIDs).

LID games represent one part of the CSFV project and await evaluation criteria

just like other CSFV games. This thesis proposes quality criteria for LID games. An LID

game needs to meet that criteria in order to have sufficient quality to make formal

verification. This study proposes that the criteria be machine detectable. Machine

detectable loop invariants refer to those that can be detected by an automated LID.

A. RESEARCH PROBLEM

LID games turn the invariant detection process into a problem-solving game. We

observe that currently no criteria exist to measure the quality of gamers’ efforts.

The primary purpose of this thesis is to propose criteria to measure the quality of

LID gamers’ effort. Those criteria will analyze the invariants detected by gamers of

StormBound, one of the LID games of CSFV.

B. RESEARCH QUESTIONS AND HYPOTHESIS

This thesis tries to answer one primary question: How can we measure the quality

of LID (StormBound) gamers’ efforts?

One secondary question also needs to be addressed: What percentage of the

invariant detected by LID (StormBound) gamers overlaps with the checklist of Daikon,

an automated LID?

C. METHODOLOGY

This research focuses to determine whether StormBound gamers have detected

some invariants that cannot be easily produced by Daikon. The thesis uses both

qualitative and quantitative approaches. Auxiliary sources are studied primarily using a

variety of materials. The StormBound developing team at Galois Company collected the

data. This data consists of StormBound gamers’ invariants, which were written in Haskell

Language.

 3

By examining this data and the manual of Daikon (an automated LID), we

recognized that some of the gamers’ invariants are included by a Daikon checklist (see

Appendix.B). Daikon’s variants are known to have poor quality. We suggest that

StormBound loop invariants overlapping with the checklist of Daikon are poor quality.

The data we received on May 18, 2015, contains 48,244 assertions produced by

StormBound gamers. Because it is hard to analyze that much data, we developed a tool

that checks each of these assertions for detectability by Daikon. The checker is an Excel

Visual Basic for Applications (VBA) script that checks the overlapping invariants in a

given list by comparing them under the assumption defined by the user.

D. POTENTIAL BENEFITS

Firstly, game developers can use the criteria to quantify the quality of gamers’

efforts.

Secondly, project managers can use the criteria as a parameter to determine the

return of investment of the CSFV project.

E. SCOPE AND LIMITATIONS

In this thesis, we used the raw data received from one VeriGames’ developer

related to the StormBound game. However, we do not have raw data to examine the other

game Xylem, which has the similar mechanism.

Secondly, we used abstraction to simplify the highly complex data, such as

translating a first-level operation (addition, subtraction, etc.) for two variables into

another variable. That approach is likely to decrease the accuracy of the finding.

Thirdly, we used only Daikon as an automated LID. However, there are many

other tools for similar purposes. This study covers only the Daikon checklist.

F. THESIS ORGANIZATION

In Chapter I, we introduced the CSFV project by elaborating its main intent of

creating a new model for checking the software bugs with crowdsourcing. We also

explained the problem and purpose of this thesis.

 4

In Chapter II, we discuss the concepts used in this thesis. We explain software

security and its importance in today’s highly technological world. Then we explain the

two major techniques used for software security: testing and formal verification. We also

explain loop invariant analysis, automated LID, crowdsourcing, the CSFV project,

StormBound and Xylem, and the Haskell Language.

In Chapter III, we explain how we got the data. Then we introduce the method we

used to read it. The data is too complex for a non-expert to understand, so we introduce

the abstraction method that we used to make the data more understandable.

In Chapter IV, we introduce why we need such criteria. We introduce the

mechanism of automated LIDs. Finally, we introduce our checker tool developed for

detecting whether a given loop invariant is detectable by Daikon.

In Chapter V, we reveal our findings. We also explain the limitations of the study

and what can be done in further studies.

 5

II. BACKGROUND

This chapter covers the basic concepts that will help readers understand the thesis.

Section A details software security and software vulnerabilities because the CSFV project

aims to find a more affordable way to secure software free of certain types of

vulnerability. Section B elaborates on the two major methods of finding security

vulnerabilities: testing and formal verification. Formal verification is the most effective

way to ensure that software is free of certain types of vulnerability. Formal verification

can be performed with many methods, including loop invariant analysis. Section C

elaborates conventional loop invariant detection processes. The project aims to attract

online gamers who can detect loop invariants in a piece of software. Some computer

programs can also be used for the same purpose. Section D introduces Daikon as a

computer-based loop invariant analysis tool. It is a machine learning tool that detects

invariants in a given piece of code. Section E mentions the CSFV project while

explaining why DARPA performs its research and how the CSFV system works. The

CSFV project mainly depends on online games developed by various companies for that

special project. This study examines StormBound which is one of the five CSFV games.

Section F details that game.

A. SOFTWARE SECURITY AND BUGS

A bug or vulnerability in the OpenSSL software is defined as a problem in any

software. In April 2014, the release of Heartbleed vulnerability created a big concern for

the security of the Internet. One of the most significant Internet weaknesses, Heartbleed

enables hackers to distantly read memory information from various popular HTTPS sites

including many commercial one such as Amazon, EBay [4]. The release of similar

vulnerabilities negatively affects general attitude towards Internet. People are less likely

to trust the Internet if they are worried that they will lose their personal information and

their money.

With the increased Internet usage, regular Internet users’ concern for Internet

security has increased [5]. Critical Internet services are supposed to be free from security

 6

vulnerabilities. Besides Internet services, other critical systems such as Avionics can be

disastrously affected by similar weaknesses. Software security vulnerability in the

electronic systems of an aircraft can cause many people to lose life [6]. A range of

consequences of software errors have been reported as shocking news, reducing people’s

trust in software. Some of these incidents are related to English pensioners incorrectly

identified dead, an innocent man who was almost imprisoned [7].

Information technologies are in every part of our daily lives. We are surrounded

by many software systems: computers, smartphones, and tablets. All these vital

technologies have two main components: software and hardware. Besides their benefits,

they may also be harmful. On the one hand, we use smartphones to share pictures with

our family; on the other hand, hackers may access our accounts and steal our credit card

numbers. All software users, from smartphone users to an airplane pilots, are aware that

software security is vital for the safe and reliable performance of any given device. With

the increase in commercial and financial opportunities online, security concerns also

increase. Cyberspace does not have boundaries. As human beings, we can choose our

friends. Online, hackers are no further than our closest friends. Under these pessimistic

conditions, many people choose not to become involved in or over-reliant on technology.

Fortunately, experts are working to make these devices free from security concerns.

Today’s software is intricate and available to almost any user. It is developed in

diverse languages and performs on diverse execution environments, such as browsers,

language processors, and databases [8]. Software has millions of lines of code, as well as

different functions and components from very different platforms. Just as any other

human-produced technology, it may include some failure points inside that complex

structure. Some part of that huge software is likely to fail. Failure can cause a temporary

cessation of services stop or result in credit card theft. Although a temporary cessation of

services seems trivial, its timing defines how critical it may be. In the case of an

emergency situation, a temporary cessation of services may result in loss of life.

Some researchers are looking for the possible failures in software by using either

formal methods or testing. A variety of tools and methods are used to develop and test the

software before actual utilization to guarantee that specific requirements are met [8]. In a

 7

different study, systematic test of the effectiveness of programs running on various

versions of the UNIX operating system was conducted [9].

Even if there are many testing tools and methods, they are still inadequate to

prevent discovery of new vulnerabilities [10]. Hackers can use vulnerabilities to steal

data from a critical system. In order to explain vulnerability, we present one example.

One of the most commonly known vulnerabilities is buffer overflow (BOF) vulnerability.

BOF vulnerability is a weakness that enables a code to exceed the allocated size for data

to overwrite to a different location in memory. According to [11], “The

overwriting corrupts sensitive neighboring variables of the buffer

such as the return address of a function or the stack frame pointer.”

Figure 1. A Simple Code for String Operations

The C code in Figure 1 is a simple example for BOFs. The code assigns two

variables with the size of three and four. The strcpy function copies seven characters into

the address place of “SecondBuffer” variable. The “SecondBuffer” variable is allocated

enough space to hold four characters in the memory and three characters and a NULL

value (see Figure 2). When the strcpy function runs, the first three characters of the

“5555555” are written on the “SecondBuffer,” and first two of the rest are written on the

“FirstBuffer.”

 8

Figure 2. Memory before Strcpy Function

Figure 3 shows the memory after the strcpy function execution. “FirstBuffer”

value was changed undesirably to “55” from “22.” This is a simple example for BOF

vulnerability. Some part of the code made an undesired change on the memory. If the

“FirstBuffer” variable has a critical function on the overall application, then after the

execution of strcpy this function may crash. Considering the possibility of that function

being a critical banking service, that crash may create high level financial consequences.

Figure 3. Memory after Strcpy Function

There are many other vulnerabilities similar to BOF, such as SQL injection,

command injection, cross-site scripting, and missing encryption. Every day, we encounter

news a financial damage caused by a new software security vulnerability [12]. There are

some online repositories used to publish software vulnerabilities and their solutions, such

as the National Vulnerability Database (NVD) [13], Common Vulnerabilities and

Exposures (CVE) database [10]).

B. TESTING AND FORMAL VERIFICATION

A vulnerability or bug occurs when the software does something that it is not

supposed to do. In order to detect such errors and develop software free of certain types

of vulnerability for critical functions, it is important to understand the characteristics of

software testing. The primary purpose of any software testing method is to monitor the

 9

reactions of software in the production environment and to detect the unexpected

reactions. We test a system or its components in order to be sure that it satisfies the

defined requirements. In other words, we want to guarantee that the reactions of a system

are desirable.

According to [14], “Although there has been a significant increase in security

awareness among software developers during the past few years,

there are still many developers who do not have the necessary

expertise in developing secure programs.” The shortage in expertise on the developers

made the security expert to develop automated testing tools such as Fuzz testing tools.

Professor Barton Miller and his students from University of Wisconsin Madison have

invented the first fuzz testing tool in 1989 [15]. Fuzzing is a computerized testing which

is conducted to trigger a crash in the application in order to disclose the mistakes inside

of it [16]. Fuzzing is a very popular way of testing.

Verifying software guarantees that a specific portion of software is not affected by

particular mistakes [2]. Since mainly expert engineers are needed to perform software

verification, verifying large software systems requires big budgets [2]. Formal

verification is becoming a more critical element with the increase of complex

applications. While hardware complexity increases parallel to Moore’s Law, verification

complexity is growing even more with a speed twice that of hardware complexity [17].

Since verification phase takes almost 70% of the development time, verification

complexity is considered the main bottleneck for design [17].

Formal verification includes mathematical reasoning to confirm that a design

specification is met during the execution of the system [17]. Formal verification is used

to detect the vulnerabilities, such as the BOF inside the code. Loop invariant analysis is a

method used for formal verification.

C. LOOP INVARIANT ANALYSIS

In computer science, a loop is a control statement programming language for

identifying iteration, which allows code to be executed repetitively. Due to the fluctuating

organization of loops, loops are more likely to have a bug than the other parts of the code.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Control_statement
https://en.wikipedia.org/wiki/Statement_(programming)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Execution_(computers)

 10

It is hard to reason the behavior of a loop because of the ambiguity in the number of

iterations. Furthermore, the iteration number may be subject to the input data, which

makes determining all possible combinations too hard. According to [18], “One solution

to this problem is to reason about loops independently of the number of iterations: loop

invariants are logical statements that describe properties of a loop holding for all possible

executions of the loop.” Loop invariants are the values indicating the relationship

between a single variable and a value or relationship between many data members [19].

According to [20] “An invariant is a property that holds at a certain point or

points in a program; these are often used in assert statements, documentation, and formal

specifications. Examples include being constant (x = a), non-zero (x 6= 0), being in a

range (a ≤ x ≤ b), linear relationships (y = ax + b), ordering (x ≤ y), functions from a

library (x = fn(y)), containment (x ∈ y), sortedness (x is sorted), and many more.” A loop

invariant is a scheme composed of variables from the program that are true prior to the

loop, through iterations of the loop, and after the loop [21]. For example, in Figure 4, one

can show that the statements (t >=0) and (i = div * j + t) are invariants for the

loop [21].

Figure 4. A Simple Loop Program

Testers benefit from invariants in order to better understand an application [20].

Loop invariants describe the behavior of a loop. The behavior should be the same in all

possible iterations of the loop and can be used to understand the existence of a bug inside

the loop. The number 2,147,483,647 is the maximum positive value for a 32-bit signed

 11

binary integer in computing. Considering a variable “x” as integer in a loop and a loop

invariant that shows that x can get a value greater than the maximum positive value for

a 32-bit signed binary integer, we see a problem. When the x gets a greater value than it

can store in the allocated space in memory, it writes the part that does not fit into its

allocated space into some other location that may be used by another variable. The

unintentionally changed variable may stop the code.

Loop invariants are similarly useful for testing. Testers can use them to generate

better test cases [22]. They can change the program verification process dramatically and

drastically speed up processes like automatic test case generation [18]. Having

recognized the loop invariants in the initial phases of software development,

programmers can detect the properties that produce the correct requirements [23].

D. AUTOMATED INVARIANT DISCOVERY SYSTEMS (DAIKON)

In the previous example, the loop invariants may seem easy to detect. When it

comes to the more complex applications with millions of lines of code, detecting loop

invariants is not that simple. Generally speaking, only highly educated computer

scientists can perform such a complex task. Considering the cost of formal verification by

experts, some scientists study computer programs for formal verification.

According to [19], “at present, most invariant generation is performed manually,

and tools for automating invariant detection are limited in power and effectiveness. First,

invariant detectors cannot discover a complete set of invariants, because the problem of

determining all invariants is undecidable. Second, invariant generation tools usually

operate at the level of functional granularity, partly because the idea for invariants

developed from precondition, post condition and loop invariants, which are derived from

methods that consider basic blocks, and partly because statement analysis is extremely

expensive in terms of time.”

In 2006, Ernst et al. introduced “the Daikon system for dynamic detection of

likely invariants, which is an implementation of dynamic detection of likely invariants;

that is, the Daikon invariant detector reports likely program invariants” [20]. These

invariants are written before and after the related function to be used by the developer to

 12

detect any unintended reaction. Dynamic invariant detection executes a piece of code,

detects the values that it computes, and then reports the invariant (relation), which is true

over the detected executions [20]. Moreover, it is a machine learning technique for

arbitrary data to detect invariants in C, C++, Java, and Perl programs, and in record-

structured data sources; Daikon can easily be extended to other applications [20].

Figure 5. Installation of Daikon

Daikon is a tool for dynamically detecting potential invariants and it can be

downloaded from a download site with unrestricted use [24]. The Figure 5 shows one

part of the installation process of installing Daikon.

There are some problems for the existing dynamic invariant detection method.

Firstly, Daikon can only analyze some of the variables: parameters and return values

[19]. Secondly, its checklist is extremely limited [19]. It can only detect invariants with

one, two, and three variable.

http://plse.cs.washington.edu/daikon/download/

 13

E. CROWDSOURCED FORMAL VERIFICATION

Crowdsourcing means using a large number of Internet users to perform a

particular job. In Brabham’s 2008 article [25], crowdsourcing was viewed as an online

model for distributed production and problem-solving. Since 2006, many examples

emerged in different fields. Amazon Mechanical Turk (MTurk) is a well-known example

of crowdsourcing.

MTurk is a crowdsourcing Internet platform on which users can find other people

to perform some task that is impossible to do by automation. It is an online website for

researchers to post annotation tasks so that they can be done by regular users for a small

payment [26].

Foldit is another example of crowdsourcing on the gaming industry. Foldit is an

online game that enables gamers to create correct protein structure models [27]. Foldit

showed that the potential gamers are likely to solve harder academic problems [28].

Ernst et al. [2] studied ways to leverage formal verification by using game-

playing-based verification systems. They introduced the special online game “Pipe Jam,”

which turns formal verification into a fun game for Internet users. According to [2], “to

remap the problem into a more accessible form, and use an engaging game to develop a

significantly larger number of experts capable of solving verification problems in a

remapped domain. Instead of relying on software engineers, we will develop a new

skilled verification workforce, and use crowd-sourcing on a much more general audience

of people who enjoy the challenge of playing a game.”

Crowdsourcing is a paradigm shift for many tasks, from coding to surveying.

Many companies are benefiting from that new approach. The CSFV program was

developed by DARPA to overcome the challenges related to the fact that the formal

verification techniques are expensive and time consuming [3]. Its main object is to

examine whether formal verification can be done by a large number of non-experts faster

and more cost-effectively than by current approaches [3]. Turning software verification

into a game for Internet users is the main goal of the project [3]. According to [3], “The

program envisions numerous benefits, including: increased frequency and cost-

 14

effectiveness of formal verification for more types of common COTS software; greatly

expanded audience to participate in formal verification; establishment of a permanent

community of game players interested in improving software security.” The CSFV

project basically aims to benefit from the efforts of online game by turning their efforts

into mathematical proofs that can be used to formally verify particular software. This

project may cause one regular gamer to find a bug similar to Heartbleed.

There are five games hosted on the website Verigames [3]:

• CircuitBot: “Link up a team of robots to carry out a mission.”

• Flow Jam: “Analyze and adjust a cable network to maximize its flow.”

• Ghost Map: “Free your mind by finding a path through a brain network.”

• StormBound: “Unweave the windstorm into patterns of streaming
symbols.”

• Xylem: “Catalog species of plants using mathematical formulas.”

StormBound and Xylem are two games specifically focused on loop invariant

detection. This study mainly focuses on StormBound. However, we need to give some

general information concerning Xylem to make the games related to LID. The goal of

Xylem is similar to StormBound. Both aim to make non-expert gamers contribute to LID.

It is an iPad game where gamers make mathematical observations about synthetic plants,

and thereby contribute to the formal modeling of a software system [1]. Specifically,

flowers found on the plants represent the value of variables found inside a source code

loop (for, while, do), and gamers are asked to find relationships that describe the number

of flowers [1].

Figure 6 shows a simple chapter of the game. The numbers next to the flowers are

the values of two different variables in a loop. The game requires the gamer to create an

equation from these numbers. For that special example, one solution might be (Orange

flower) x 6 = (Blue flower).

 15

Figure 6. Xylem Game Interface

If the mathematical model is an accurate enough representation of the

functionality of the software system, then the outputs of the automated reasoning tools

are accurate statements about the software system itself [1]. The classic example of a

bottom-up, data-driven approach is Daikon [20], which uses analyst-provided templates

to synthesize possible invariants among the variables of interest, discarding the

propositions that are not attested by concrete test cases. One particular use case where

bottom-up approaches excel—and the case for which Xylem is intended—is in

annotating large legacy systems with loop invariants to prove broad categories of safety

and security properties [1].

F. STORMBOUND

StormBound was developed by scientists from Galois Company, specialists in

formal methods, and VoidALPHA Company. They developed StormBound in the first

phase of the project. In a personal interview, Aaron Tomb explained the logic behind the

StormBound game as follows: Formal verification is a mathematical approach to

software security. StormBound was developed to contribute to formal verification by

using the math skills of the gamers.

Frama-C stands for Framework for Modular Analysis of C programs. It is a set of

interoperable program analyzers for C programs, which enables the analysis of C

programs without executing them. Frama-C gathers several static analysis techniques in a

single collaborative framework [29].

https://en.wikipedia.org/wiki/C_program
https://en.wikipedia.org/wiki/Program_analyzer
https://en.wikipedia.org/wiki/C_program

 16

The normal workflow of Frama-C is simple. First, verification experts annotate

programs with invariants into Frama-C. Then, Frama-C attempts to prove that those

invariants are actually valid for the underlying program by automatically generating a

collection of verification conditions (VCs). These VCs are purely logical formulas which,

if they can be proved, show that the invariants are true invariants of the program. Figure 7

shows a code that was annotated by Frama-C.

Figure 7. A Part of Code Annotated by Frama-C

StormBound verification infrastructure made small changes on that flow. Instead

of having experts insert annotations describing invariants, the verification infrastructure

inserts placeholders. It assumes that the given loop should have a loop invariant, so it

 17

produces a name such as I1 and creates an abstract predicate with that name,

parameterized by all of the program variables in scope. Considering the program

variables x, y, and z, it would add an annotation such as (/*@ loop invariant I1(x, y, z);

*/) before the loop. Once annotations exist in all the appropriate places, Frama-C can

generate verification conditions. At this point, we do not know the predicate for I1. It can

be “x < y,” “x + y = z - 1,” or anything else mentioning those variables. The blue printed

material in the figure-x shows the annotations added by Frama-C. They just have the

name of the variables.

Thus, there are no concrete invariants, only automatically-added abstract

predicates. The gamer’s job in StormBound is to figure out what all uninterpreted

predicates should be. In other words, gamers are expected to turn the (/*@ loop invariant

I1(x, y, z); */) into something like “x < y,” “x + y = z - 1.” The key problem is that some

of the required invariants are complex. Therefore, it could be that game gamers have a

hard time discovering the complex invariants. However, because abstract predicates are

introduced for every relevant location, human experts could fill them in later, as if they

were gamers, but by directly specifying them instead of playing the game. Figure 8 shows

an example of the StormBound game phases.

 18

Figure 8. StormBound Game Interface

In other words, a gamer sees the overall proof structure or part of it while trying

to generate new assertions. Many of vulnerabilities exist because of undefined behavior

in the C language. Frama-C has a built-in notion of what is fully-defined by the C

standard and includes in its VCs checks that the program is operating within the well-

defined subset of the language. The Frama-C work has established that certain Common

Weakness Enumerations (CWE) can never happen when the code follows a well-defined

subset of the C language, and the VCs mainly confirm no violation of that subset.

The only manual effort from people other than gamers required in our current

game is in these areas:

• Identifying the particular bits of source code to analyze and feeding them

into the system.

• Putting in any additional annotations about high-level properties to check

(unnecessary if you just want to check for memory safety/well-defined

behavior).

 19

In case of an abstract predicate for two variables, there are many possible subsets

of x and y. The StormBound brings some of them to gamers so that they can see a general

relationship between them such as (x>y). The main difficulty is that, in practice, there are

close to an infinite number of possible values, so it is impossible to test them all

individually. In StormBound, seeing a representative sample of possible values would be

enough to help gamers discover relevant patterns.

G. SUMMARY

Crowdsourcing is a relatively novel approach. Many new business ideas are using

that approach in their business model. Amazon MTurk is the most commonly known.

Crowdsourcing is still continuing to attract new ideas. This evolution merged with the

problems of software security in the CSFV project. CSFV is a new model for detecting

software bugs with crowdsourcing. CSFV scientists developed five online games. One of

them, StormBound, expects its gamers to detect the possible loop invariants in a given

piece of software. The gamers are not aware of the related piece of software. They are

attempting to solve the problems similar to other puzzle games.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

III. DATA ABSTRACTION

This chapter covers the content of the data. The data provided by StormBound

developers requires getting the data from files scattered among hundreds of different

subfolders. Beside that complex location system, the data consists of many assertions that

are a combination of many interrelated functions. Section A explains the complexity of

the data. Section B proposes a data translation method that makes the data easy to

understand. And Section C explains how we manage the data by using a parser that we

developed for that particular problem.

A. DATA COMPLEXITY
For this research, no new data has been collected. Galois Company directly

provided the data that they have collected from December 2013 to May 2015. Therefore,

we did not have a control over which types of data were collected. The dataset includes

48,244 assertions generated by from StormBound gameplay and is considered valid by

the StormBound backend. The data provided by StormBound developers consists of

4,473 distinct folders and subfolders. The assertions were stored inside “prop” files in the

least level folders. It is necessary to pull the data from these “prop” files and push than

into a single file.

Figure 9. Shell Script to Pull Data from Files

The folders are named after connected functions, such as “acache_cancelentry” or

“tostruct_in_dhcid.” Inside each of these folders are other folders with the name ending

 22

with P (), Q(), and I1(). P refers to the pre-condition, Q refers to post-condition, and I

refers to the loop invariants. Inside some of these subfolders were folders named

“human.” That indicates that gamers created an invariant for that part of the function.

Inside that are the numbered folders, all of which have a single file named “Prop.”

Assertions were stored inside these files. Using the shell script (see Figure 9), we copies

48,244 assertions from the “prop” files into a single text file.

Figure 10 shows three examples of these assertions, which are written in Haskell

programming language, a standardized and general-purpose purely functional

programming language [30]. Assertions are combinations of many logical and

mathematical functions. Each additional function in an assertion increases its complexity.

Figure 10. Examples of the Assertions

In Haskell, the function names are written before the parameters. For example,

FEq(Var “x”)(Var “y”) indicates that the variable “x” is equal to variable “y.” For

readers, it is exceptionally hard to understand the assertions with more than three

functions. Therefore, a translation of the data from the current format to a more

comprehensible format is crucial to analyze it.

https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Purely_functional
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Programming_language

 23

Figure 11 shows the cumulative distribution function diagram of the number of

variables in each StormBound loop invariant. Almost 80 percent of Stormbound loop

invariants has less than three variables. That shows that the data is not too complex in

terms of the variables. Secondly, the average number of variables is 1.8. This study does

not differentiate the variables with the same name. All variables indicate a different

variable than the other variables in the same loop invariant even if their names are same.

That is a limitation of the study. More accurate analysis is assumed to refer to a lesser

complexity level.

Figure 11. Variables CDF Diagram

Figure 12 shows the cumulative distribution function diagram of the number of

parameters in each StormBound loop invariant. Parameters refer to the expression names

such as Add, Sub, Mul, Div, Mod, Deref, SizeOf, ArrayIx , FNot, FOr, FEq, FGt , FNeq,

Number Of Variables

Summary Statistics

Mean

Std Dev

Std Err Mean

Upper 95% Mean

Lower 95% Mean

N

1.8265898

1.3588793

0.0061867

1.8387159

1.8144638

48244

CDF Plot

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30 35 40

Number Of Variables

 24

FValid. Almost 80 percent of Stormbound loop invariants has less than three variables.

That shows that the data has moderately complex in terms of the variables. Secondly, the

average number of variables is 2.9. This study does not differentiate the parameters

according to their contribution to the complexity of a loop invariant. Parameters such as

FEq an FGt adds more complexity than parameters such as Add, Sub. That is a limitation

of the study. More accurate analysis is assumed to refer to a higher complexity level.

Figure 12. Parameters CDF Diagram

Figure 13 shows the statistics about the parameters of StormBound loop

invariants in detail. It shows how many times a particular parameter used in total, what

the average number of usage of any particular parameter in each loop invariants is what

the range of any particular parameter is. This table shows that some of the parameters

were used more than the others. As an example, the number of Deref is 36426, while the

number of SizeOf is 1428.

Number Of Parameters

Summary Statistics

Mean

Std Dev

Std Err Mean

Upper 95% Mean

Lower 95% Mean

N

2.9417751

3.0510632

0.0138909

2.9690014

2.9145488

48244

CDF Plot

0.2

0.4

0.6

0.8

0 20 40 60 80 100

Number Of Parameters

25

Table 1. Statistical Information about StormBound Loop Invariants

B. DATA TRANSLATION

The Haskell language is hard to read for readers with no experience with it. Even

for readers with a programming background, Haskell language requires extra effort to

understand a given assertion.

Figure 13 was generated by using explanations provided by StormBound

developers, who show how to interpret the assertions. The “data term” indicates the most

inner part of the assertions. The most minute part of the data is constructed by “var Text”

and “Const Integer.” “Var Text” refers to a variable with the name defined in the text

 26

after “Var,” and “Const Integer” refers to a constant with the value of integer. The

functions “Add,” “Mul,” “Sub,” “Div,” and “Mod” are used to produce terms from two

other terms. They are basic mathematical operations used for addition, subtraction,

multiplication, division, and the modular of two values. “Deref” is the dereferencing

function, which returns the value stored in the pointed location. “SizeOf” is the function

that generates the size of a given variable. “ArrayIx” is the function that stores a

sequential collection of elements of the same type. “ArrayIx” function has two

parameters: first, showing its name; and second, showing element numbers of the stated

array. “Getfield” is the function that searches the public field with the specified name.

Figure 13. Data Abstraction Table

The raw assertion data as represented in Figure 10 was too complex to analyze. That

is why we developed an abstraction methodology. We categorized the expression into three

levels. Each level expression consists of either the same or lower-level expressions. The first

level consists of the operations with terms that are called variables and constants. Variables

are the data that have different values throughout the execution of the loop, while the

constant always has the same value. The output of the first-level operation is

another term. Then comes the second level, which takes the output from the first level.

Second-level expressions are the most common expressions. They consist of two first-

level expressions. Figure 13 shows the organization of a second-level expression. These

27

expressions refer equality, non-equality, or greatness. FEq is the function of equality. It

has two term inputs. It compares them, and if they are equal, then it returns true.

Otherwise, it returns false. FGt is the function of greater. It indicates greatness between

two terms. FNeq is the inverse of FEq. The FValid formula states that a pointer is valid at

the first address for the offsets between the second and third terms. The third-level

expressions are FTrue, FFalse, FNot, FAnd, and FOr. Third-level expressions have at

most two formulas coming from the second level. These formulas represent either “True”

or “False.” The hierarchical structure of the data is shown in the Figure . Each level

produces an output value that can be used in the same level or one level below as an input

value. Figure 14 shows an example of second level operations in a loop invariant.

Figure 14. Second-Level Operations Overview

In Figure 15, the upper expression shows a typical StormBound assertion, and the

lower expression shows its visual explanation. In the first level, a constant is added into a

variable called “level.” In the second level, the output of the previous addition is

compared with another variable “message_0.” In the third level, the output of the

previous expression has performed an “or” operation with FTrue. While reading the data,

readers should be careful pairing the parenthesis and referring the parenthesis to the right

28

function. The average number of parentheses in the data is 6.5. The total number of

parenthesis is 314,730.

Figure 15. Data Translation Example

Figure 16 shows a translation of one of the assertions into C language. For the

readers with no programming background, assertions basically have two equations:

(i+line=line) and (i+line > i-mysize). The assertion combines them with an “or” function.

This means that if one of them is true, the assertion is true. Readers find the translated

expression easier to understand. However, the example in Figure 16 is one of the short

loop invariants inside the data. There are many longer expressions inside the data.

 29

Figure 16. Translation of a Loop Invariant

C. DATA MANAGEMENT

Translating one assertion from Haskell language into C language is simple;

however, there are 48,244 assertions that need to be analyzed. That burdensome task

requires an automation system. We recognized that our data should be translated into a

more concise and comprehensible format. Considering the high number of data, such a

task should be done by a computer program. For that purpose, we developed a parser,

which turns the variants written in Haskell language into more comprehensible format,

which makes the manual analysis easier. The codes of parser are shown in the

Appendix.A. The parser reads the assertion from a text file named “input” and writes the

translated version into a text file named “output.”

Figure 17 shows the main algorithm used in parser. It loads each loop invariant

provided into “input” text file as a string variable called assertion. A “for” statement used

to read each char inside the assertion variable. It checks if the char value is one of the

correspondence letter. In case of the algorithm in Figure 17, it checks for FEq statement.

Before running the parser, we changed the all “FEq” statements into “Q” letter to make it

easier for the program to match the referred statement. The regular expression library of c

programming language can be used to shorten the process. When the parser detects a “Q”

letter, it checks the char variable coming after “Q” letter. If that value is a “(“ sign, that

indicates that an equality function starts. Then the code calls the pairing function which

find the “)” as a pair of a given “(.” Then the code knows that this is an equality function

 30

and the numbers of the parenthesis corresponding with the function. The second part of

the code changes the “Q” letter with and “=“ sing and replace it after the paired

parenthesis.

Figure 17. Parser Algorithm

As an example, FGt(“msgset”)(Sub(Const)(SizeOf(“sock”))) is

translated into msgset>(Const)-SizeOf(“sock”) by our Parser. The assertions show

that a variable named “msfset” is greater than the number produced by subtracting a

constant value from the size of the variable named “sock.” The difference between two

expressions is so clear that the second one is easier to analyze. Parser was developed with

C programming language. It facilitates the data analysis process well. We were able to

see the variants. Figure 18 shows an example of loop invariant translated by parser.

Clearly, second representation is easy to read for a human expert. The example loop in

Figure 18 has three statements connected to each other with OR functions. The second

statement in the same figure shows the translation of the first statement performed by

parser.

 31

Figure 18. A loop invariant translated by parser

D. SUMMARY

Variants detected by StormBound gamers are stored as expressions in Haskell

language. Haskell style is not as clearly understandable as other languages, such as C,

C++, or Java. To analyze the data better, gamers’ variants should be translated from

Haskell language to a more comprehensible format. Parser is a tool developed by C

programming language to read the invariants written with Haskell language and write the

translated variants into a text file.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

IV. METHODOLOGY AND FINDINGS

This chapter proposes the methodology used in the thesis. Besides using LID

gamers, there are two other methods for detecting a loop invariant: expert human

detection and machine (computer) detection. Expert solutions are known to be high

quality while machine solutions are known to be low quality for the reasons explained in

the previous chapter. We propose that machine detectability of a given loop invariant is

decent criteria for quality assessment of a solution of a LID gamer.

Therefore, the first section elaborates on why we choose machine detectability.

The second section elaborates on how we can determine the machine detectability of a

loop invariant. The third section proposes an automated tool to determine machine

detectability of multiple loop invariants. We used that tool to examine the 48244 loop

invariants detected by StormBound gamers. The fourth section demonstrates our

examinations.

A. CRITERIA: MACHINE DETECTABILITY

The CSFV project aims to find a way of using a crowd for formal verification.

The realization of that aim depends largely on the satisfactory quality of the solutions

(assertions) produced by online gamers. StormBound game requests from players to solve

a puzzle the solution of which also produces loop invariants for the related piece of code.

Consequently, its overall success primarily depends on the quality of players’ invariants.

One way of measuring quality is to compare one item to a corresponding item. That does

not provide absolute accuracy; however, that type of measuring gives some idea about the

quality of the referred item in cases where it is not possible to measure quality in any

other way. In the case of LID, a counterpart can be one of the other detection methods.

There are two conventional loop invariant detection methods: human experts and

automated system.

To make a quality comparison between assertions of StormBound and assertions

of human experts is clearly the most accurate and useful way; however, for many reasons,

doing so is extremely hard. Firstly, experts have different qualification levels. Similarly,

 34

StormBound gamers have different skills. Making a comparison between those two

different samples does not provide healthy results. Secondly, making an expert and a

StormBound gamer solve the same problem is too hard.

Besides human expertise, some computer programs (automated systems) can

detect loop invariants from a given piece of code. Having a limited checklist makes

automated systems detect poor quality invariants. Automated systems are blind for

detecting any other invariant not stated in the checklist. Using an automated system as a

counterpart is a better approach becaues their quality is known to be poor. Because

automated systems detect poor quality invariants, the checklist can be used to evaluate

any given loop invariant. In this study, we chose the automated systems as the

counterpart for our methodology. The relative quality over the automated system of a

given assertion detected by a StormBound user is the criteria we used. The invariants

detected by an automated system are regarded as having poor quality.

In this study, we defined an invariant that can be detectable by an automated

system as machine-detectable. We propose that the machine detectability is good quality

criteria for gamers’ efforts. The checklist (capability list) of an automated tool can be

used to determine whether a given invariant is machine-detectable or not.

B. INVARIANT CHECKLIST OF AN AUTOMATED SYSTEM

The main drawback of an automated LID is its low number of checklist items,

which indicates the possible invariants to be detected. These checklists were defined by

the developer of the application and can be extended. As a typical example of an

automated LID, Daikon can check for 75 different invariants, including being constant (x

= a), non-zero (x 6= 0), being in a range (a ≤ x ≤ b), linear relationships (y = ax + b),

ordering (x ≤ y), functions from a library (x = fn(y)), sortedness (x is sorted), and an

easily extendable list [20]. In this study, we use the DAIKON checklist for our

methodology. The complete Daikon checklist is given in Appendix.B.

There are two ways to check whether a given StormBound assertion is detectable

by Daikon. Firstly, we can use the related code to run on DAIKON and compare the

result, whether the output of Daikon and StormBound mechanism is same. If they are

 35

same, then we know that Daikon can find that invariant; thus, the StormBound game is

not necessary to detect that invariant. That is the most accurate method, yet it is hard to

accomplish. It requires that each piece of code be run in Daikon and the result recorded.

Secondly, we can use the Daikon checklist to see whether a given assertion is

inside that list. If it is inside that list, we can easily affirm that this particular assertion can

be detected by Daikon and therefore know that it has poor quality. In this study, we use

the second method.

The checklist comparison requires a checking table that was filled with both

looking into the Daikon checklist and the assertions detected by StormBound gamers. It

is really hard to build such a table. This table needs to have two main columns: functions

used in StormBound assertions, and their detectability by Daikon.

The assertions have many subfunctions and need to be divided into small parts for

a better diagnosis. Daikon ignores variable names when inferring invariants. In this study,

we ignored the name of the variables and regarded them just as “VARIABLES” [24], or

“VAR,” as a more condensed format. Similarly, all constant values were regarded as

“CONSTANT” or “CON,” regardless of value.

Secondly, we can shrink the data more by making the following translations.

Assuming that a variable added to a constant is another variable,

Add(VARIABLE)(CONSTANT) can be regarded as another VARIABLE. The

conversion table (see Table 2) shows the possible conversions.

Table 2. Conversion Table

Add(CON)(VAR) VAR Div(CON)(VAR) VAR ArrayIx(VAR)(CON) VAR
Add(VAR)(CON) VAR Div(CON)(CON) CON GetField(VAR)NAME VAR
Add(CON)(CON) CON Div(VAR)(CON) VAR Add(VAR)(VAR) VAR
Sub(CON)(VAR) VAR Mod(CON)(VAR) VAR Sub(VAR)(VAR) VAR
Sub(CON)(CON) CON Mod(CON)(CON) CON Mul(VAR)(VAR) VAR
Sub(VAR)(CON) VAR Mod(VAR)(CON) VAR Div(VAR)(VAR) VAR
Mul(CON)(VAR) VAR Deref(VAR) VAR Mod(VAR)(VAR) VAR
Mul(CON)(CON) CON SizeOf(CON) CON
Mul(VAR)(CON) VAR SizeOf(VAR) VAR

 36

C. AN AUTOMATED TOOL TO CHECK DETECTABILITY

Checking machine detectability of a single invariant is not that hard. However,

checking hundreds of them requires automation. For that purpose, we developed the

checker, an Excel file with a VBA module. In our model, we assumed that all variables

are independent from other variables inside the same invariant and that their names are

unimportant. Before running the checker, we deleted all variable names from the

invariants.

The checker has four sheets named “main,” “assumptions,” “detectability,” and

“results.” In the “main” sheet, the user adds the loop invariants to be checked. In the

“assumption” sheet, the user defines basic assumptions to be implemented into the

invariants. For example, Add(Variable)(Constant) is equal to another variable.

Implementing these assumptions into a given invariant basically simplifies it. After that

simplification operation, the number of variables becomes the minimum. For example,

the expression Add(Add(Variable)(Constant))(Constant) becomes

(Variable) after simplification. Our assumptions include the following:

• Output of any first-level operation with two variables is variable.

• Output of any first-level operation with one constant and a variable is
variable.

• Output of any first-level operation with two constants is variable.

• Output of any first-level operation with one constant is a constant.

• Output of any first-level operation with one variable is a variable.

Secondly, the checker checks for detectability of the invariant that is simplified in the

previous process by using the detectability table in the sheet “detectability.” We produced

the detectability table by using the Daikon checklist (see Appendix B). Table 3 shows our

detectability table. We assumed that the second-level expressions stated in Table 3 are

machine detectable. In other words, Daikon can easily detect them.

 37

Table 3. Detectability Table

FEq(VAR)(VAR) FGt(CON)(CON)
FEq(CON)(VAR) FGt(VAR)Null
FEq(VAR)(CON) FNeq(VAR)(VAR)
FEq(CON)(CON) FNeq(CON)(VAR)
FEq(VAR)Null FNeq(VAR)(CON)
FGt(VAR)(VAR) FNeq(CON)(CON)
FGt(CON)(VAR) FNeq(VAR)Null
FGt(VAR)(CON)

Figure 19. Detectability

In Figure 19, the upper figure shows a typical invariant, and the lower figure

shows a decomposed form of it in three layers that was explained in the third chapter.

The first-level operations consist of many recursive first-level operations. On the other

hand, second-level operations are not recursive. The checker has two loops: one for the

first level, and one for the second level. The first loop simplifies the first-level expression

into either “VARIBLE” or “CONSTANT.” And the second loop checks for detectability.

Figure 20 shows the VBA code of the checker.

 38

Figure 20. Excel VBA Codes for Checker

We developed checker by using the Microsoft Excel VBA development tool. It

can easily be developed by using another language, such as Java, C.

D. FINDINGS

Using assumptions criteria stated in previous section and using the detectability

criteria stated in Table 3, we found that 37,718 of the assertions are machine detectable.

That number refers to 78% of the whole data. When we deleted the following

detectability criteria from the productivity sheet, we observed that the detectability

number decreased to 37,130.

Table 4. Weak Assumptions

Add(VAR)(VAR)
Sub(VAR)(VAR)
Mul(VAR)(VAR)
Div(VAR)(VAR)
Mod(VAR)(VAR)

 39

This shows that any change in the assumptions changes the output value. We

deleted the value inside Table 4 from detection table, because we believe that these are

the weakest assumptions. Deleting those from the assumptions list increases the accuracy.

Each assumption requires a more detailed analysis.

E. SUMMARY

The CSFV project needs criteria to measure the quality of gamers’ efforts. This

study proposes that machine detectability can be used as quality criteria. The checker is a

tool that can be used to find out if a particular loop invariant is machine detectable.

According to the result from the checker, 78% of the invariants produced by StormBound

Players are machine detectable.

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

V. CONCLUSIONS AND FUTURE WORK

A. SUMMARY AND CONCLUSION

The main goal of this study is to propose criteria for the loop invariants produced

by players of StormBound , a CSFV game. This study proposes machine detectability as

the quality criteria. Machine detectability refers to whether a given loop invariant that

was produced by a CSFV gamer can be detected by an automated loop invariant detector.

This study used Daikon as an example automated loop invariant detector. Moreover, this

study provided two algorithms: a parser that translates an invariant written in Haskell

language into a more understandable format and a checker that determines whether an

invariant can be detected by Daikon. Finally, this study states the percentage of machine

detectability of invariants detected by gamers.

In this study, we searched a method to measure the quality of the loop invariants

produced by StormBound gamers. Firstly, we examined the 48,244 loop invariants

collected by the StormBound team and developed a parser to turn them into a more

understandable format. Secondly, we proposed that machine detectability can be used as

the quality criteria. Thirdly, we examined the invariants for machine detectability.

Finally, we developed a script to automate that examination process.

Figure 21 shows the essence of this study. The left circle refers to the loop

invariants detected by StormBound players, while the right circle refers to the checklist of

automated systems. The area that shows the overlapping parts of both circles indicates the

poor quality loop invariants.

 42

Figure 21. Quality Criteria of Loop Invariants

According to the result from the checker, 78% of the invariants in the dataset are

machine detectable and therefore of poor quality. Consequently, 22% of the invariants in

the dataset are not machine detectable and therefore are potentially of high quality. As an

overall contribution, the steps and criteria used for conducting this work provides a

systematic method to measure the quality of loop invariants produced by CSFV gamers,

and human analysts in general. This study demonstrates that the stormbound game can

potentially be used to attract Internet users to produce loop invariants that would

otherwise require human expert effort.

B. LIMITATIONS AND FUTURE WORK

These findings depend on several assumptions, and therefore, the accuracy of the

results partially depends on the accuracy of the assumptions. More accurate assumptions

require expert level studies in automated loop invariant detection. Secondly, we only used

Daikon to represent automated LID, but there are additional tools. Studies should be

performed adjusting the assumptions referring to the other tools. Thirdly, it would be

beneficial to apply the proposed methodology to study output from other CSFV games in

 43

order to properly evaluate the potential of the CSFV concept. Finally, we developed the

checker tool with Microsoft Excel and it requires Excel software to run. Studies should

be performed to develop a general tool to check the machine detectability of a given loop

invariant on other platforms. That tool could increase the functionality of the checker.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

APPENDIX A. PARSER CODES

/* Parser for Haskell to C */

//Parser reads the input file line by line and write them in c into output file

#include<stdio.h>

#include <string.h>

int findPair(int first,char assertion[]);

int findPair(int first,char assertion[])

{

 int Parenthesis=0;

 int a;

 if (assertion[first]!='(')

 {

 return 0;

 }

a=first;

 while(assertion[a] != '\0')

 {

 if (assertion[a] == '(')

 {

 Parenthesis=Parenthesis+1;

 }else if (assertion[a]==')')

 {

 Parenthesis=Parenthesis-1;

 }

 if (Parenthesis==0)

 {

 return a;

 }

 a=a+1;

 }

}

void SpaceRemover(char* statement);

void SpaceRemover(char* statement)

{

 char* first = statement;

 char* second = statement;

 while(*second != 0)

 46

 {
 *first = *second++;
 if(*first != ' ')
 first++;
 }
 *first = 0;
}

int control;
main()
{
 FILE *inputFile;
 inputFile = fopen ("input.txt","r");

 FILE *outputFile;
 outputFile = fopen ("output.txt","w");

 char changeLetter;
 int a,j,pair,pair2,pair3;

 char assertion[2500];
 char temp[2500];

 int nextLine=0;

 while (feof(inputFile) == 0)
 {
 nextLine = nextLine +1;
 puts ("---------------------------");
 fscanf (inputFile, "%s \n", assertion);

int control;
/*in the input.txt file change FTrue into (FTrue) and Null into (Null)*/

//in the input.txt file change (Var" into ("
//in the input.txt file change FOr into V
//in the input.txt file change FNot into C
//in the input.txt file change FEq into Q
//in the input.txt file change FGt into G
//in the input.txt file change FNeq into N
//in the input.txt file change Add into A
//in the input.txt file change Sub into S
//in the input.txt file change Mul into M
//in the input.txt file change Div into D

 47

//in the input.txt file change FValid into AV

//in the input.txt file change the ArrayIx(Var"name")(Var"name") into

J("name")("name"), this function does just ArrayIx(V...

//in the input.txt file change GetField(into PP(

//in the input.txt file change Deref(into Z(

a=0;

while(assertion[a] != '\0')

 {

 pair= findPair(a+1,assertion);

 if (assertion[a]=='R' & pair!=0)

 {

 for (j=a; j<=pair; j=j+1)

 {

 assertion[j]=assertion[j+1];

 }

 assertion[pair]='|';

 pair3=findPair(pair+1,assertion);

 assertion[a]='{';

 assertion[pair-1]='}';

 assertion[pair+1]='{';

 assertion[pair3]='}';

 }

 a=a+1;

}

//FNot

a=0;

while(assertion[a] != '\0')

{

 pair= findPair(a+1,assertion);

 if (assertion[a]=='C' & pair!=0)

 {

 // printf ("%s" ,"hello");

 assertion[a+1]='{';

 assertion[pair]='}';

 assertion[a]='!';

 }

 a=a+1;

}

//FEq

a=0;

while(assertion[a] != '\0')

{

 48

pair= findPair(a+1,assertion);
 if (assertion[a]=='Q'& pair!=0)
 {
 for (j=a; j<=pair; j=j+1)
 {
 assertion[j]=assertion[j+1];
 }
 assertion[pair]='=';
 }
 a=a+1;
}
//FGt
a=0;
while(assertion[a] != '\0')
{
pair= findPair(a+1,assertion);
 if (assertion[a]=='G'& pair!=0)
 {
 for (j=a; j<=pair; j=j+1)
 {
 assertion[j]=assertion[j+1];
 }
 assertion[pair]='>';
 }
 a=a+1;
}
//FNeq
a=0;
while(assertion[a] != '\0')
{
pair= findPair(a+1,assertion);
if (assertion[a]=='N'& pair!=0)
 {
 for (j=a; j<=pair; j=j+1)
 {
 assertion[j]=assertion[j+1];
 }
 assertion[pair]='!';
 }
 a=a+1;
}
//Add
a=0;
while(assertion[a] != '\0')
{

 49

 pair= findPair(a+1,assertion);
 if (assertion[a]=='A'& pair!=0)
 {
 for (j=a; j<=pair; j=j+1)
 {
 assertion[j]=assertion[j+1];
 }
 assertion[pair]='+';
 }
 a=a+1;
}
//Sub
a=0;
while(assertion[a] != '\0')
{
 pair= findPair(a+1,assertion);
 if (assertion[a]=='S'& pair!=0)
 {
 for (j=a; j<=pair; j=j+1)
 {
 assertion[j]=assertion[j+1];
 }
 assertion[pair]='-';
 }
 a=a+1;
}
//Mul
a=0;
while(assertion[a] != '\0')
{
pair= findPair(a+1,assertion);
 if (assertion[a]=='M'& pair!=0)
 {
 for (j=a; j<=pair; j=j+1)
 {
 assertion[j]=assertion[j+1];
 }
 assertion[pair]='x';
 }
 a=a+1;
}
//Div
a=0;
while(assertion[a] != '\0')
{

 50

 pair= findPair(a+1,assertion);

 if (assertion[a]=='D'& pair!=0)
 {
 for (j=a; j<=pair; j=j+1)
 {
 assertion[j]=assertion[j+1];
 }
 assertion[pair]='/';
 }
 a=a+1;
}
//FValid
a=0;
while(assertion[a] != '\0')
{
 pair= findPair(a+1,assertion);
 if (assertion[a]=='V'& pair!=0)
 {
 for (j=a; j<=pair; j=j+1)
 {
 assertion[j-1]=assertion[j+1];
 }
 assertion[pair-1]='f';

 pair2= findPair(pair+1,assertion);
 for (j=pair; j<=pair2; j=j+1)
 {
 assertion[j]=assertion[j+1];
 }
 assertion[pair2]='f';
 }
 a=a+1;
}
//ArrayIx
a=0;
while(assertion[a] != '\0')
{
pair= findPair(a+1,assertion);
 if (assertion[a]=='J'& pair!=0)
 {
 pair3=findPair(pair+1,assertion);

 assertion[a]=' ';
 assertion[a+1]=' ';

 51

 assertion[a+2]=' ';
 assertion[pair]=' ';
 assertion[pair-1]=' ';
 assertion[pair+1]='[';
 assertion[pair3]=']';

 }
 a=a+1;
}
//Getfield
a=0;
while(assertion[a] != '\0')
{
 pair= findPair(a+1,assertion);
 if (assertion[a]=='P'& pair!=0)

 {
 for (j=a; j<=pair; j=j+1)
 {
 assertion[j-1]=assertion[j+1];
 }
 assertion[pair-1]='-';
 assertion[pair]='>';
 }
 a=a+1;
}
//Deref
a=0;
while(assertion[a] != '\0')
{
 pair= findPair(a+1,assertion);
 if (assertion[a]=='Z' & pair!=0)
 {
 assertion[a]=' ';
 assertion[a+1]='*';
 assertion[pair]=' ';
 }
 a=a+1;
}
//refine {{{
a=0;
while(assertion[a] != '\0')
{
 if (assertion[a]=='{' & assertion[a+1]=='{')
 {

 52

 assertion[a]=' ';
 }
 a=a+1;
}
SpaceRemover(assertion);
fprintf (outputFile, "%s\n" , assertion);

}

fclose(outputFile);
fclose(inputFile);
return 0;
}

 53

APPENDIX B. DAIKON CHECKLIST

Daikon checklist consists of the loop invariant types that Daikon can detect. It was drawn from
Daikon Invariant Detector User Manual [24].

AndJoiner:This is a special invariant used internally by Daikon to represent an antecedent
invariant in an implication where that antecedent consists of two invariants anded together.

CommonFloatSequence:Represents sequences of double values that contain a common subset.
Prints as {e1, e2, e3, ...} subset of x[].

CommonSequence:Represents sequences of long values that contain a common subset. Prints
as {e1, e2, e3, ...} subset of x[].

CommonStringSequence:Represents string sequences that contain a common subset. Prints as
"{s1, s2, s3, ...} subset of x[]".

CompleteOneOfScalar:Tracks every unique value and how many times it occurs.
CompleteOneOfString:Tracks every unique value and how many times it occurs.
DummyInvariant:This is a special invariant used internally by Daikon to represent invariants

whose meaning Daikon doesn’t understand. The only operation that can be performed on a
DummyInvariant is to print it.

EltLowerBound:Represents the invariant that each element of a sequence of long values is greater
than or equal to a constant. Prints as x[] elements >= c.

EltLowerBoundFloat:Represents the invariant that each element of a sequence of double values is
greater than or equal to a constant. Prints as x[] elements >= c.

EltNonZero:Represents the invariant "x != 0" where x represents all of the elements of a sequence
of long. Prints as x[] elements != 0.

EltNonZeroFloat:Represents the invariant "x != 0" where x represents all of the elements of a
sequence of double. Prints as x[] elements != 0.

EltOneOf:Represents sequences of long values where the elements of the sequence take on only a
few distinct values. Prints as either x[] == c (when there is only one value), or as x[] one of {c1, c2,
c3} (when there are multiple values).

EltOneOfFloat:Represents sequences of double values where the elements of the sequence take on
only a few distinct values. Prints as either x[] == c (when there is only one value), or as x[] one of {c1, c2,
c3} (when there are multiple values).

EltOneOfString:Represents sequences of String values where the elements of the sequence take on
only a few distinct values. Prints as either x[] == c (when there is only one value), or as x[] one of {c1, c2,
c3} (when there are multiple values).

EltRangeFloat.EqualMinusOne:Internal invariant representing double scalars that are equal to
minus one. Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same
thing

EltRangeFloat.EqualOne:Internal invariant representing double scalars that are equal to one. Used
for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing

EltRangeFloat.EqualZero:Internal invariant representing double scalars that are equal to zero.
Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeFloat.GreaterEqual64:Internal invariant representing double scalars that are greater than
or equal to 64. Used for non-instantiating suppressions. Will never print since Bound accomplishes the
same thing

EltRangeFloat.GreaterEqualZero:Internal invariant representing double scalars that are greater
than or equal to 0. Used for non-instantiating suppressions. Will never print since Bound accomplishes the
same thing

EltRangeInt.BooleanVal:Internal invariant representing longs whose values are always 0 or 1.
Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeInt.Bound0_63:Internal invariant representing longs whose values are between 0 and 63.
Used for non-instantiating suppressions. Will never print since Bound accomplishes the same thing.

 54

EltRangeInt.EqualMinusOne:Internal invariant representing long scalars that are equal to minus
one. Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing

EltRangeInt.EqualOne:Internal invariant representing long scalars that are equal to one. Used for
non-instantiating suppressions. Will never print since OneOf accomplishes the same thing

EltRangeInt.EqualZero:Internal invariant representing long scalars that are equal to zero. Used for
non-instantiating suppressions. Will never print since OneOf accomplishes the same thing.

EltRangeInt.Even:Invariant representing longs whose values are always even. Used for non-
instantiating suppressions. Since this is not covered by the Bound or OneOf invariants it is printed.

EltRangeInt.GreaterEqual64:Internal invariant representing long scalars that are greater than or
equal to 64. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same
thing

EltRangeInt.GreaterEqualZero:Internal invariant representing long scalars that are greater than or
equal to 0. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same
thing

EltRangeInt.PowerOfTwo:Invariant representing longs whose values are always a power of 2
(exactly one bit is set). Used for non-instantiating suppressions. Since this is not covered by the Bound or
OneOf invariants it is printed.

EltUpperBound:Represents the invariant that each element of a sequence of long values is less
than or equal to a constant. Prints as x[] elements <= c.

EltUpperBoundFloat:Represents the invariant that each element of a sequence of double values is
less than or equal to a constant. Prints as x[] elements <= c.

EltwiseFloatEqual:Represents equality between adjacent elements (x[i], x[i+1]) of a double
sequence. Prints as x[] elements are equal.

EltwiseFloatGreaterEqual:Represents the invariant ≥ between adjacent elements (x[i], x[i+1])
of a double sequence. Prints as x[] sorted by ≥.

EltwiseFloatGreaterThan:Represents the invariant > between adjacent elements (x[i], x[i+1]) of
a double sequence. Prints as x[] sorted by >.

EltwiseFloatLessEqual:Represents the invariant ≤ between adjacent elements (x[i], x[i+1]) of a
double sequence. Prints as x[] sorted by ≤.

EltwiseFloatLessThan:Represents the invariant < between adjacent elements (x[i], x[i+1]) of a
double sequence. Prints as x[] sorted by <.

EltwiseIntEqual:Represents equality between adjacent elements (x[i], x[i+1]) of a long sequence.
Prints as x[] elements are equal.

EltwiseIntGreaterEqual:Represents the invariant ≥ between adjacent elements (x[i], x[i+1]) of
a long sequence. Prints as x[] sorted by ≥.

EltwiseIntGreaterThan:Represents the invariant > between adjacent elements (x[i], x[i+1]) of a
long sequence. Prints as x[] sorted by >.

EltwiseIntLessEqual:Represents the invariant ≤ between adjacent elements (x[i], x[i+1]) of a
long sequence. Prints as x[] sorted by ≤.

EltwiseIntLessThan:Represents the invariant < between adjacent elements (x[i], x[i+1]) of a
long sequence. Prints as x[] sorted by <.

Equality:Keeps track of sets of variables that are equal. Other invariants are instantiated for only
one member of the Equality set, the leader. If variables x, y, and z are members of the Equality set and xis
chosen as the leader, then the Equality will internally convert into binary comparison invariants that print
as x == y and x == z.

FloatEqual:Represents an invariant of == between two double scalars.
FloatGreaterEqual:Represents an invariant of ≥ between two double scalars.
FloatGreaterThan:Represents an invariant of > between two double scalars.
FloatLessEqual:Represents an invariant of ≤ between two double scalars.
FloatLessThan:Represents an invariant of < between two double scalars.
FloatNonEqual:Represents an invariant of != between two double scalars.
FunctionBinary.BitwiseAndLong_{xyz, yxz, zxy}:Represents the invariant x = BitwiseAnd (y,

z) over three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are
checked.

 55

FunctionBinary.BitwiseOrLong_{xyz, yxz, zxy}:Represents the invariant x = BitwiseOr (y,
z) over three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are
checked.

FunctionBinary.BitwiseXorLong_{xyz, yxz, zxy}:Represents the invariant x = BitwiseXor (y,
z) over three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are
checked.

FunctionBinary.DivisionLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x =
Division (y, z) over three long scalars. Since the function is non-symcriteria, all six permutations of the
variables are checked.

FunctionBinary.GcdLong_{xyz, yxz, zxy}:Represents the invariant x = Gcd (y, z) over three long
scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.LogicalAndLong_{xyz, yxz, zxy}:Represents the invariant x = LogicalAnd (y,
z) over three long scalars. For logical operations, Daikon treats 0 as false and all other values as true. Since
the function is symcriteria, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.LogicalOrLong_{xyz, yxz, zxy}:Represents the invariant x = LogicalOr (y,
z) over three long scalars. For logical operations, Daikon treats 0 as false and all other values as true. Since
the function is symcriteria, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.LogicalXorLong_{xyz, yxz, zxy}:Represents the invariant x = LogicalXor (y,
z) over three long scalars. For logical operations, Daikon treats 0 as false and all other values as true. Since
the function is symcriteria, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.LshiftLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x = Lshift (y,
z) over three long scalars. Since the function is non-symcriteria, all six permutations of the variables are
checked.

FunctionBinary.MaximumLong_{xyz, yxz, zxy}:Represents the invariant x = Maximum (y,
z) over three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are
checked.

FunctionBinary.MinimumLong_{xyz, yxz, zxy}:Represents the invariant x = Minimum (y, z) over
three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.ModLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x = Mod (y,
z) over three long scalars. Since the function is non-symcriteria, all six permutations of the variables are
checked.

FunctionBinary.MultiplyLong_{xyz, yxz, zxy}:Represents the invariant x = Multiply (y, z) over
three long scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are checked.

FunctionBinary.PowerLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x = Power (y,
z) over three long scalars. Since the function is non-symcriteria, all six permutations of the variables are
checked.

FunctionBinary.RshiftSignedLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x =
RshiftSigned (y, z) over three long scalars. Since the function is non-symcriteria, all six permutations of the
variables are checked.

FunctionBinary.RshiftUnsignedLong_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x =
RshiftUnsigned (y, z) over three long scalars. Since the function is non-symcriteria, all six permutations of
the variables are checked.

FunctionBinaryFloat.DivisionDouble_{xyz, xzy, yxz, yzx, zxy, zyx}:Represents the invariant x =
Division (y, z) over three double scalars. Since the function is non-symcriteria, all six permutations of the
variables are checked.

FunctionBinaryFloat.MaximumDouble_{xyz, yxz, zxy}:Represents the invariant x = Maximum
(y, z) over three double scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy
are checked.

FunctionBinaryFloat.MinimumDouble_{xyz, yxz, zxy}:Represents the invariant x = Minimum (y,
z) over three double scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are
checked.

FunctionBinaryFloat.MultiplyDouble_{xyz, yxz, zxy}:Represents the invariant x = Multiply (y,
z) over three double scalars. Since the function is symcriteria, only the permutations xyz, yxz, and zxy are
checked.

 56

GuardingImplication:This is a special implication invariant that guards any invariants that are over
variables that are sometimes missing. For example, if the invariant a.x = 0 is true, the guarded implication
is a != null \rArr; a.x = 0.

Implication:The Implication invariant class is used internally within Daikon to handle invariants
that are only true when certain other conditions are also true (splitting).

IntEqual:Represents an invariant of == between two long scalars.
IntGreaterEqual:Represents an invariant of ≥ between two long scalars.
IntGreaterThan:Represents an invariant of > between two long scalars.
IntLessEqual:Represents an invariant of ≤ between two long scalars.
IntLessThan:Represents an invariant of < between two long scalars.
IntNonEqual:Represents an invariant of != between two long scalars.
IsPointer:IsPointer is an invariant that heuristically determines whether an integer represents a

pointer (a 32-bit memory address). Since both a 32-bit integer and an address have the same representation,
sometimes a a pointer can be mistaken for an integer. When this happens, several scalar invariants are
computed for integer variables. Most of them would not make any sense for pointers. Determining whether
a 32-bit variable is a pointer can thus spare the computation of many irrelevant invariants.

LinearBinary:Represents a Linear invariant between two long scalars x and y, of the form ax + by
+ c = 0. The constants a, b and c are mutually relatively prime, and the constant a is always positive.

LinearBinaryFloat:Represents a Linear invariant between two double scalars x and y, of the
form ax + by + c = 0. The constants a, b and c are mutually relatively prime, and the constant a is always
positive.

LinearTernary:Represents a Linear invariant over three long scalars x, y, and z, of the form ax +
by + cz + d = 0. The constants a, b, c, and d are mutually relatively prime, and the constant a is always
positive.

LinearTernaryFloat:Represents a Linear invariant over three double scalars x, y, and z, of the
form ax + by + cz + d = 0. The constants a, b, c, and d are mutually relatively prime, and the constant a is
always positive.

LowerBound:Represents the invariant <pre>x >= c</pre>, where c is a constant and x is a long
scalar.

LowerBoundFloat:Represents the invariant <pre>x >= c</pre>, where c is a constant and x is a
double scalar.

Member:Represents long scalars that are always members of a sequence of long values. Prints as x
in y[] where x is a long scalar and y[] is a sequence of long.

MemberFloat:Represents double scalars that are always members of a sequence of double values.
Prints as x in y[] where x is a double scalar and y[] is a sequence of double.

MemberString:Represents String scalars that are always members of a sequence of String values.
Prints as x in y[] where x is a String scalar and y[] is a sequence of String.

Modulus:Represents the invariant x == r (mod m) where x is a long scalar variable, r is the
(constant) remainder, and m is the (constant) modulus.

NoDuplicates:Represents sequences of long that contain no duplicate elements. Prints as x[]
contains no duplicates.

NoDuplicatesFloat:Represents sequences of double that contain no duplicate elements. Prints
as x[] contains no duplicates.

NonModulus:Represents long scalars that are never equal to r (mod m) where all other numbers in
the same range (i.e., all the values that x doesn’t take from min(x) to max(x)) are equal to r (mod m). Prints
as x != r (mod m), where r is the remainder and m is the modulus.

NonZero:Represents long scalars that are non-zero. Prints as x != 0, or as x != null for pointer
types.

NonZeroFloat:Represents double scalars that are non-zero. Prints as x != 0.
NumericFloat.Divides:Represents the divides without remainder invariant between two double

scalars. Prints as x % y == 0.
NumericFloat.Square:Represents the square invariant between two double scalars. Prints as x =

y**2.
NumericFloat.ZeroTrack:Represents the zero tracks invariant between two double scalars; that is,

when x is zero, y is also zero. Prints as x = 0 ⇒ y = 0.

 57

NumericInt.BitwiseAndZero:Represents the BitwiseAnd == 0 invariant between two long scalars;
that is, x and y have no bits in common. Prints as x & y == 0.

NumericInt.BitwiseComplement:Represents the bitwise complement invariant between two long
scalars. Prints as x = ~y.

NumericInt.BitwiseSubset:Represents the bitwise subset invariant between two long scalars; that
is, the bits of y are a subset of the bits of x. Prints as x = y | x.

NumericInt.Divides:Represents the divides without remainder invariant between two long scalars.
Prints as x % y == 0.

NumericInt.ShiftZero:Represents the ShiftZero invariant between two long scalars; that is, x right-
shifted by y is always zero. Prints as x >> y = 0.

NumericInt.Square:Represents the square invariant between two long scalars. Prints as x = y**2.
NumericInt.ZeroTrack:Represents the zero tracks invariant between two long scalars; that is,

when x is zero, y is also zero. Prints as x = 0 ⇒ y = 0.
OneOfFloat:Represents double variables that take on only a few distinct values. Prints as either x

== c (when there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).
OneOfFloatSequence:Represents double[] variables that take on only a few distinct values. Prints

as either x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).
OneOfScalar:Represents long scalars that take on only a few distinct values. Prints as either x ==

c (when there is only one value), x one of {c1, c2, c3} (when there are multiple values), or x has only one
value (when x is a hashcode (pointer) - this is because the numerical value of the hashcode (pointer) is
uninteresting).

OneOfSequence:Represents long[] variables that take on only a few distinct values. Prints as
either x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

OneOfString:Represents String variables that take on only a few distinct values. Prints as either x
== c (when there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

OneOfStringSequence:Represents String[] variables that take on only a few distinct values. Prints
as either x == c (when there is only one value) or as x one of {c1, c2, c3} (when there are multiple values).

PairwiseFloatEqual:Represents an invariant between corresponding elements of two sequences of
double values. The length of the sequences must match for the invariant to hold. A comparison is made
over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] == y[].

PairwiseFloatGreaterEqual:Represents an invariant between corresponding elements of two
sequences of double values. The length of the sequences must match for the invariant to hold. A
comparison is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth.
Prints as x[] ≥ y[].

PairwiseFloatGreaterThan:Represents an invariant between corresponding elements of two
sequences of double values. The length of the sequences must match for the invariant to hold. A
comparison is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth.
Prints as x[] > y[].

PairwiseFloatLessEqual:Represents an invariant between corresponding elements of two
sequences of double values. The length of the sequences must match for the invariant to hold. A
comparison is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth.
Prints as x[] ≤ y[].

PairwiseFloatLessThan:Represents an invariant between corresponding elements of two sequences
of double values. The length of the sequences must match for the invariant to hold. A comparison is made
over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] < y[].

PairwiseIntEqual:Represents an invariant between corresponding elements of two sequences of
long values. The length of the sequences must match for the invariant to hold. A comparison is made over
each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] == y[].

PairwiseIntGreaterEqual:Represents an invariant between corresponding elements of two
sequences of long values. The length of the sequences must match for the invariant to hold. A comparison
is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[]
≥ y[].

PairwiseIntGreaterThan:Represents an invariant between corresponding elements of two
sequences of long values. The length of the sequences must match for the invariant to hold. A comparison

 58

is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[]
> y[].

PairwiseIntLessEqual:Represents an invariant between corresponding elements of two sequences
of long values. The length of the sequences must match for the invariant to hold. A comparison is made
over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] ≤ y[].

PairwiseIntLessThan:Represents an invariant between corresponding elements of two sequences
of long values. The length of the sequences must match for the invariant to hold. A comparison is made
over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] < y[].

PairwiseLinearBinary:Represents a linear invariant (i.e., y = ax + b) between the corresponding
elements of two sequences of long values. Each (x[i], y[i]) pair is examined. Thus, x[0] is compared
to y[0], x[1]to y[1] and so forth. Prints as y[] = a * x[] + b.

PairwiseLinearBinaryFloat:Represents a linear invariant (i.e., y = ax + b) between the
corresponding elements of two sequences of double values. Each (x[i], y[i]) pair is examined. Thus, x[0] is
compared to y[0],x[1] to y[1] and so forth. Prints as y[] = a * x[] + b.

PairwiseNumericFloat.Divides:Represents the divides without remainder invariant between
corresponding elements of two sequences of double. Prints as x[] % y[] == 0.

PairwiseNumericFloat.Square:Represents the square invariant between corresponding elements of
two sequences of double. Prints as x[] = y[]**2.

PairwiseNumericFloat.ZeroTrack:Represents the zero tracks invariant between corresponding
elements of two sequences of double; that is, when x[] is zero, y[] is also zero. Prints as x[] = 0 ⇒ y[]
= 0.

PairwiseNumericInt.BitwiseAndZero:Represents the BitwiseAnd == 0 invariant between
corresponding elements of two sequences of long; that is, x[] and y[] have no bits in common. Prints as x[]
& y[] == 0.

PairwiseNumericInt.BitwiseComplement:Represents the bitwise complement invariant between
corresponding elements of two sequences of long. Prints as x[] = ~y[].

PairwiseNumericInt.BitwiseSubset:Represents the bitwise subset invariant between corresponding
elements of two sequences of long; that is, the bits of y[] are a subset of the bits of x[]. Prints as x[] = y[] |
x[].

PairwiseNumericInt.Divides:Represents the divides without remainder invariant between
corresponding elements of two sequences of long. Prints as x[] % y[] == 0.

PairwiseNumericInt.ShiftZero:Represents the ShiftZero invariant between corresponding elements
of two sequences of long; that is, x[] right-shifted by y[] is always zero. Prints as x[] >> y[] = 0.

PairwiseNumericInt.Square:Represents the square invariant between corresponding elements of
two sequences of long. Prints as x[] = y[]**2.

PairwiseNumericInt.ZeroTrack:Represents the zero tracks invariant between corresponding
elements of two sequences of long; that is, when x[] is zero, y[] is also zero. Prints as x[] = 0 ⇒ y[] =
0.

PairwiseString.SubString:Represents the substring invariant between corresponding elements of
two sequences of String. Prints as x[] is a substring of y[].

PairwiseStringEqual:Represents an invariant between corresponding elements of two sequences of
String values. The length of the sequences must match for the invariant to hold. A comparison is made over
each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[] == y[].

PairwiseStringGreaterEqual:Represents an invariant between corresponding elements of two
sequences of String values. The length of the sequences must match for the invariant to hold. A comparison
is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[]
≥ y[].

PairwiseStringGreaterThan:Represents an invariant between corresponding elements of two
sequences of String values. The length of the sequences must match for the invariant to hold. A comparison
is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[]
> y[].

PairwiseStringLessEqual:Represents an invariant between corresponding elements of two
sequences of String values. The length of the sequences must match for the invariant to hold. A comparison
is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[]
≤ y[].

 59

PairwiseStringLessThan:Represents an invariant between corresponding elements of two
sequences of String values. The length of the sequences must match for the invariant to hold. A comparison
is made over each(x[i], y[i]) pair. Thus, x[0] is compared to y[0], x[1] to y[1], and so forth. Prints as x[]
< y[].

Positive:Represents the invariant x > 0 where x is a long scalar. This exists only as an example
for the purposes of the manual. It isn’t actually used (it is replaced by the more general invariant
LowerBound).

PrintableString:Represents a string that contains only printable ascii characters (values 32 through
126 plus 9 (tab)

RangeFloat.EqualMinusOne:Internal invariant representing double scalars that are equal to minus
one. Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing

RangeFloat.EqualOne:Internal invariant representing double scalars that are equal to one. Used for
non-instantiating suppressions. Will never print since OneOf accomplishes the same thing

RangeFloat.EqualZero:Internal invariant representing double scalars that are equal to zero. Used
for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing.

RangeFloat.GreaterEqual64:Internal invariant representing double scalars that are greater than or
equal to 64. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same
thing

RangeFloat.GreaterEqualZero:Internal invariant representing double scalars that are greater than
or equal to 0. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same
thing

RangeInt.BooleanVal:Internal invariant representing longs whose values are always 0 or 1. Used
for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing.

RangeInt.Bound0_63:Internal invariant representing longs whose values are between 0 and 63.
Used for non-instantiating suppressions. Will never print since Bound accomplishes the same thing.

RangeInt.EqualMinusOne:Internal invariant representing long scalars that are equal to minus one.
Used for non-instantiating suppressions. Will never print since OneOf accomplishes the same thing

RangeInt.EqualOne:Internal invariant representing long scalars that are equal to one. Used for
non-instantiating suppressions. Will never print since OneOf accomplishes the same thing

RangeInt.EqualZero:Internal invariant representing long scalars that are equal to zero. Used for
non-instantiating suppressions. Will never print since OneOf accomplishes the same thing.

RangeInt.Even:Invariant representing longs whose values are always even. Used for non-
instantiating suppressions. Since this is not covered by the Bound or OneOf invariants it is printed.

RangeInt.GreaterEqual64:Internal invariant representing long scalars that are greater than or equal
to 64. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same thing

RangeInt.GreaterEqualZero:Internal invariant representing long scalars that are greater than or
equal to 0. Used for non-instantiating suppressions. Will never print since Bound accomplishes the same
thing

RangeInt.PowerOfTwo:Invariant representing longs whose values are always a power of 2
(exactly one bit is set). Used for non-instantiating suppressions. Since this is not covered by the Bound or
OneOf invariants it is printed.

Reverse:Represents two sequences of long where one is in the reverse order of the other. Prints
as x[] is the reverse of y[].

ReverseFloat:Represents two sequences of double where one is in the reverse order of the other.
Prints as x[] is the reverse of y[].

SeqFloatEqual:Represents an invariant between a double scalar and a a sequence of double values.
Prints as x[] elements y where x is a double sequence and y is a double scalar.

SeqFloatGreaterEqual:Represents an invariant between a double scalar and a a sequence of double
values. Prints as x[] elements ≥ y where x is a double sequence and y is a double scalar.

SeqFloatGreaterThan:Represents an invariant between a double scalar and a a sequence of double
values. Prints as x[] elements > y where x is a double sequence and y is a double scalar.

SeqFloatLessEqual:Represents an invariant between a double scalar and a a sequence of double
values. Prints as x[] elements ≤ y where x is a double sequence and y is a double scalar.

SeqFloatLessThan:Represents an invariant between a double scalar and a a sequence of double
values. Prints as x[] elements < y where x is a double sequence and y is a double scalar.

 60

SeqIndexFloatEqual:Represents an invariant over sequences of double values between the index
of an element of the sequence and the element itself. Prints as x[i] == i.

SeqIndexFloatGreaterEqual:Represents an invariant over sequences of double values between the
index of an element of the sequence and the element itself. Prints as x[i] ≥ i.

SeqIndexFloatGreaterThan:Represents an invariant over sequences of double values between the
index of an element of the sequence and the element itself. Prints as x[i] > i.

SeqIndexFloatLessEqual:Represents an invariant over sequences of double values between the
index of an element of the sequence and the element itself. Prints as x[i] ≤ i.

SeqIndexFloatLessThan:Represents an invariant over sequences of double values between the
index of an element of the sequence and the element itself. Prints as x[i] < i.

SeqIndexFloatNonEqual:Represents an invariant over sequences of double values between the
index of an element of the sequence and the element itself. Prints as x[i] != i.

SeqIndexIntEqual:Represents an invariant over sequences of long values between the index of an
element of the sequence and the element itself. Prints as x[i] == i.

SeqIndexIntGreaterEqual:Represents an invariant over sequences of long values between the
index of an element of the sequence and the element itself. Prints as x[i] ≥ i.

SeqIndexIntGreaterThan:Represents an invariant over sequences of long values between the index
of an element of the sequence and the element itself. Prints as x[i] > i.

SeqIndexIntLessEqual:Represents an invariant over sequences of long values between the index of
an element of the sequence and the element itself. Prints as x[i] ≤ i.

SeqIndexIntLessThan:Represents an invariant over sequences of long values between the index of
an element of the sequence and the element itself. Prints as x[i] < i.

SeqIndexIntNonEqual:Represents an invariant over sequences of long values between the index of
an element of the sequence and the element itself. Prints as x[i] != i.

SeqIntEqual:Represents an invariant between a long scalar and a a sequence of long values. Prints
as x[] elements == y where x is a long sequence and y is a long scalar.

SeqIntGreaterEqual:Represents an invariant between a long scalar and a a sequence of long
values. Prints as x[] elements ≥ y where x is a long sequence and y is a long scalar.

SeqIntGreaterThan:Represents an invariant between a long scalar and a a sequence of long values.
Prints as x[] elements > y where x is a long sequence and y is a long scalar.

SeqIntLessEqual:Represents an invariant between a long scalar and a a sequence of long values.
Prints as x[] elements ≤ y where x is a long sequence and y is a long scalar.

SeqIntLessThan:Represents an invariant between a long scalar and a a sequence of long values.
Prints as x[] elements < y where x is a long sequence and y is a long scalar.

SeqSeqFloatEqual:Represents invariants between two sequences of double values. If order matters
for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] == y[]
lexically.

SeqSeqFloatGreaterEqual:Represents invariants between two sequences of double values. If order
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[]
≥ y[] lexically.

SeqSeqFloatGreaterThan:Represents invariants between two sequences of double values. If order
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[]
> y[] lexically.

SeqSeqFloatLessEqual:Represents invariants between two sequences of double values. If order
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[]
≤ y[] lexically.

SeqSeqFloatLessThan:Represents invariants between two sequences of double values. If order
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[]
< y[] lexically.

SeqSeqIntEqual:Represents invariants between two sequences of long values. If order matters for
each variable (which it does by default), then the sequences are compared lexically. Prints as x[] == y[]
lexically.

SeqSeqIntGreaterEqual:Represents invariants between two sequences of long values. If order
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[]
≥ y[] lexically.

 61

SeqSeqIntGreaterThan:Represents invariants between two sequences of long values. If order
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[]
> y[] lexically.

SeqSeqIntLessEqual:Represents invariants between two sequences of long values. If order matters
for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] ≤
y[] lexically.

SeqSeqIntLessThan:Represents invariants between two sequences of long values. If order matters
for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] <
y[] lexically.

SeqSeqStringEqual:Represents invariants between two sequences of String values. If order matters
for each variable (which it does by default), then the sequences are compared lexically. Prints as x[] == y[]
lexically.

SeqSeqStringGreaterEqual:Represents invariants between two sequences of String values. If order
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[]
≥ y[] lexically.

SeqSeqStringGreaterThan:Represents invariants between two sequences of String values. If order
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[]
> y[] lexically.

SeqSeqStringLessEqual:Represents invariants between two sequences of String values. If order
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[]
≤ y[] lexically.

SeqSeqStringLessThan:Represents invariants between two sequences of String values. If order
matters for each variable (which it does by default), then the sequences are compared lexically. Prints as x[]
< y[] lexically.

StdString.SubString:Represents the substring invariant between two String scalars. Prints as x is a
substring of y.

StringEqual:Represents an invariant of == between two String scalars.
StringGreaterEqual:Represents an invariant of ≥ between two String scalars.
StringGreaterThan:Represents an invariant of > between two String scalars.
StringLessEqual:Represents an invariant of ≤ between two String scalars.
StringLessThan:Represents an invariant of < between two String scalars.
StringNonEqual:Represents an invariant of != between two String scalars.
SubSequence:Represents two sequences of long values where one sequence is a subsequence of

the other. Prints as x[] is a subsequence of y[].
SubSequenceFloat:Represents two sequences of double values where one sequence is a

subsequence of the other. Prints as x[] is a subsequence of y[].
SubSet:Represents two sequences of long values where one of the sequences is a subset of the

other; that is each element of one sequence appears in the other. Prints as either x[] is a subset of y[]or
as x[] is a superset of y[].

SubSetFloat:Represents two sequences of double values where one of the sequences is a subset of
the other; that is each element of one sequence appears in the other. Prints as either x[] is a subset of y[] or
as x[] is a superset of y[].

SuperSequence:Represents two sequences of long values where one sequence is a subsequence of
the other. Prints as x[] is a subsequence of y[].

SuperSequenceFloat:Represents two sequences of double values where one sequence is a
subsequence of the other. Prints as x[] is a subsequence of y[].

SuperSet:Represents two sequences of long values where one of the sequences is a subset of the
other; that is each element of one sequence appears in the other. Prints as either x[] is a subset of y[]or
as x[] is a superset of y[].

SuperSetFloat:Represents two sequences of double values where one of the sequences is a subset
of the other; that is each element of one sequence appears in the other. Prints as either x[] is a subset of
y[] or as x[] is a superset of y[].

UpperBound:Represents the invariant <pre>x <= c</pre>, where c is a constant and x is a long
scalar.

 62

UpperBoundFloat:Represents the invariant <pre>x <= c</pre>, where c is a constant and x is a
double scalar.

 63

LIST OF REFERENCES

[1] H. Logas et al., “Software Verification Games: Designing Xylem, The Code of
Plants,” 2014.

[2] W. Dietl et al., “Verification games: Making verification fun,” in Proceedings of
the 14th Workshop on Formal Techniques for Java-Like Programs, Beijing,
China, 2012, pp. 42–49.

[3] M Hsieh. (n.d.). Crowd Sourced Formal Verification (CSFV). [Online].
Available: http://www.darpa.mil/program/crowd-sourced-formal-verification.

[4] Z. Durumeric et al.,”The matter of heartbleed,” in Proceedings of the 2014
Conference on Internet Measurement Conference, Vancouver, BC, Canada, 2014,
pp. 475–488.

[5] J. M. Wing, “A symbiotic relationship between formal methods and security,” in
Computer Security, Dependability and Assurance: From Needs to Solutions,
1998. Proceedings, Washington, DC, 1998, pp. 26–38.

[6] Y. Moy, E. Ledinot, H. Delseny, V. Wiels and B. Monate, “Testing or Formal
Verification: DO-178C Alternatives and Industrial Experience,” Software, IEEE,
vol. 30, pp. 50–57, 2013.

[7] A. J. Ko, B. Dosono and N. Duriseti, “Thirty years of software problems in the
news,” in Proceedings of the 7th International Workshop on Cooperative and
Human Aspects of Software Engineering, Hyderabad, India, 2014, pp. 32–39.

[8] H. Shahriar and M. Zulkernine, “Mitigating Program Security Vulnerabilities:
Approaches and Challenges,” ACM Comput.Surv., vol. 44, pp. 11:1-11:46, jun,
2012.

[9] B. P. Miller, L. Fredriksen and B. So, “An Empirical Study of the Reliability of
UNIX Utilities,” Commun ACM, vol. 33, pp. 32–44, dec, 1990.

[10] Common vulnerabilities and exposures. (2015, Aug. 25). [Online]. Available:
http://cve.mitre.org/.

[11] H. Shahriar, H. M. Haddad and I. Vaidya, “Buffer Overflow Patching for C and
C++ Programs: Rule-based Approach,” SIGAPP Appl.Comput.Rev., vol. 13, pp.
8–19, jun, 2013.

[12] N. H. Pham, T. T. Nguyen, H. A. Nguyen and T. N. Nguyen, “Detection of
recurring software vulnerabilities,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, Antwerp,
Belgium, 2010, pp. 447–456.

 64

[13] US-CERT bulletins. (n.d.). [Online]. Available: http://www.us-cert.gov/

[14] C. Smith and G. Francia III, “Security fuzzing toolset,” in Proceedings of the 50th
Annual Southeast Regional Conference, New York, , 2012, pp. 329–330.

[15] A. Takanen, “Fuzzing: The past, the present and the future,” in Actes Du 7{\`e}Me
Symposium Sur La s{\’E}Curit{\’E} Des Technologies De L’Information Et Des
Communications (SSTIC), Codenomicon Ltd, 2009, pp. 202–212.

[16] K. Y. Sim, F. Kuo and R. Merkel, “Fuzzing the out-of-memory killer on
embedded linux: An adaptive random approach,” in Proceedings of the 2011
ACM Symposium on Applied Computing, New York, 2011, pp. 387–392.

[17] A. Sanghavi, “What is formal verification?” EE Times Asia, 21 May 2010. 2010.

[18] O. Ponsini, H. Collavizza, C. Fedele, C. Michel and M. Rueher, “Automatic
verification of loop invariants,” in Software Maintenance (ICSM), 2010 IEEE
International Conference, Timisoara, 2010, pp. 1–5.

[19] M. Kim and A. Petersen, “An Evaluation of Daikon: A Dynamic Invariant
Detector,”. [Online]. Available : https://www.cs.cmu.edu/~aldrich/courses/654-
sp05/homework/example-tool-eval.pdf

[20] M. D. Ernst et al.,”The Daikon System for Dynamic Detection of Likely
Invariants,” Sci.Comput.Program., vol. 69, pp. 35–45, dec, 2007.

[21] K. Deibel. (2002). “On the Automatic Detection of Loop Invariants.” [Online].
http://courses.cs.washington.edu/courses/cse503/02wi/papers/deibel.pdf

[22] C. Gladisch, “Verification-based test case generation for full feasible branch
coverage,” in Software Engineering and Formal Methods, 2008. SEFM’08. Sixth
IEEE International Conference, 2008, pp. 159–168.

[23] Jicheng Fu, F. B. Bastani and I-Ling Yen, “Automated discovery of loop
invariants for high-assurance programs synthesized using AI planning
techniques,” in High Assurance Systems Engineering Symposium, 2008. HASE
2008. 11th IEEE, Washington, DC, 2008, pp. 333–342.

[24] Daikon. (August 4, 2015). The Daikon Invariant Detector User Manual [Daikon
Invariant Detector User Manual]. Available:
http://plse.cs.washington.edu/daikon/download/doc/daikon.html.

[25] D. C. Brabham, “Crowdsourcing as a Model for Problem Solving -- An
Introduction and Cases,” Convergence, vol. 14, pp. 75, 2008.

 65

[26] C. Rashtchian, P. Young, M. Hodosh and J. Hockenmaier, “Collecting image
annotations using amazon’s mechanical turk,” in Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language Data with Amazon’s
Mechanical Turk, Los Angeles, California, 2010, pp. 139–147.

[27] F. Khatib et al.,”Algorithm discovery by protein folding game players,” Proc.
Natl. Acad. Sci., vol. 108, pp. 18949-18953, Nov 22, 2011.

[28] F. Khatib et al.,”Crystal structure of a monomeric retroviral protease solved by
protein folding game players,” Nature Structural & Molecular Biology, vol. 18,
pp. 1175–1177, 09/2011, 2011.

[29] What is Frama-C. (n.d.) Frama-C Software Analyzers. Available: http://frama-
c.com/what_is.html.

[30] S. P. Jones, Ed., Haskell, 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. RESEARCH PROBLEM
	B. RESEARCH QUESTIONS AND HYPOTHESIS
	C. Methodology
	D. POTENTIAL BENEFITS
	E. scope and limitations
	F. thesis ORganization

	II. BACKGROUND
	A. Software Security and bugs
	B. Testing and formal verification
	C. Loop Invariant Analysis
	D. Automated invariant discovery Systems (Daikon)
	E. Crowdsourced formal verification
	F. STORMBOUND
	G. SUMMARY

	III. Data abstraction
	A. Data COMPLEXITY
	B. DATA TRANSLATION
	C. DATA MANAGEMENT
	D. SUMMARY

	IV. METHODOLOGY and findings
	A. CRITERIA: MACHINE DETECTABILITY
	B. INVARIANT cHECKLIST OF AN AUTOMATED SYSTEM
	C. An AUTOMATED TOOL TO CHECK DETECTABILITY
	D. findings
	E. SUMMARY

	V. CONCLUSIONS AND FUTURE WORK
	A. summary and conclusion
	B. LIMITATIONS anD future work

	Appendix A. Parser codes
	Appendix B. DAIKON CHECKLIST
	List of References
	initial distribution list

